

COLUSA AND GLENN GROUNDWATER AUTHORITIES

Colusa Subbasin Joint Technical Advisory Committee GSP Development

Discussion Topics

- 4.a.—TAC Recommendation Timeline
- 4.b.—Sustainable Management Criteria
- 4.c.—Projects and Management Actions
- 5.—Topics for May 14 Joint TAC Meeting

4.a. TAC Recommendation Timeline

- Preparation of GSP Chapters 6 and 7 depend on TAC decisions
 - -Chapter 6—Sustainable Management Criteria
 - -Chapter 7—Projects and Management Actions
- Both chapters scheduled for draft review by July 16
- Joint TAC Meetings
 - April 9 (today)—TAC recommendations for Water Quality and Subsidence
 - May 14—TAC recommendations for Groundwater Levels, Groundwater storage, GDEs, and Streamflow Depletion
 - June 11—TAC recommendation for Projects and Management Actions to be included in the GSP
- Possible Need for Extra Meetings

4.b. Sustainable Management Criteria

4.b.i. Groundwater Quality

Saline Groundwater Quality Monitoring

- Total Dissolved Solids
- Inadequate historical data
- Establish a monitoring network for groundwater to monitor upwelling saline water

Program (GAMA) and U.S. Geological Survey (USGS) National Water Inf System (NMIS) 202

State Plane Zone II. feet

1 TDS concentrations shown are the maximum detected at that location 2. The drinking water standards (2018) secondary maximum contaminant le for TDS is 500 mg/L (recommended), 1.000 mg/L (upper limit), and 1.500 m (short term)

250 - 50 500 - 1.000 1.000 - 1.500 > 1.500

Maximum TDS Concentration (mg/L) i

< 250 250 - 50 500 - 1.00 1.000 - 1.50 > 1,500

imum TDS Concentration (mg/L) i Wells with Unknown Dep

Historical Concentrations Total Dissolved Solids

Colusa GSA and Glenn GSA Colusa Subbasin Draft Groundwater Sustainability Plan

4/9/2021

Groundwater Quality Monitoring Network

- Technical team recommendation:
 - -Establish groundwater quality monitoring network
 - Monitor for TDS
 - Monitor deep zone for upwelling saline waters
 - -Establish salinity thresholds for groundwater quality as part of 2027 GSP update

Proposed Action

The Joint TAC recommends that the GSA Boards adopt a GSP policy to conduct monitoring of saline groundwater to support establishing salinity thresholds for groundwater quality as part of the 2027 GSP update.

4.b.ii. Land Subsidence

Land Subsidence Approach

- Use Sacramento Valley Height Modernization Project Benchmarks for representative monitoring network
- Continue extensometer monitoring to continue to improve basin understanding
- Thresholds established with consideration of historic subsidence using a maximum rate of subsidence over a five-year period for each station

Colusa Subbasi

Land Subsidence MT and MO Recommendations

- Thresholds established with consideration of historic subsidence using a maximum rate of subsidence over a five-year period for three groups based on measurements from 2006 to 2017:
- Areas with greater than 1 foot of historical subsidence:
 - Set MT at 0.60 foot/year, set MO at 0.25 feet/year
- Areas with less than 1 foot historical subsidence:
 - Set MT at 0.50 feet/year, set MO at 0.25 feet/year
- Consider adding subsidence monitoring benchmarks

2 inches - 0.5 ft

New Benchmark or Not Surveyed

Joint TAC

Land Subsidence Undesirable Result Recommendation

- Undesirable Result is detected when:
 - -10% or more (6 or more of 60 representative monitoring sites) experience subsidence rates above the minimum threshold

Joint TAC

Proposed Action

The Joint TAC recommends that the GSA Boards adopt the Land Subsidence MTs and MOs presented on Slide 11 and the Land Subsidence Undesirable Results criteria presented on Slide 12

GSA Board Recommendations for TAC Adoption at Next Meeting (5/14/21):

- Groundwater Levels
- Groundwater Storage
- Groundwater Dependent Ecosystems
- Surface Water Depletions

Minimum Thresholds and Multiple Sustainability Indicators

- GSP must manage to avoid undesirable results for all applicable sustainability indicators and beneficial uses
- Need to simultaneously consider minimum thresholds across multiple sustainability indicators because they can be different for:
 - Groundwater Levels
 - Groundwater Dependent Ecosystems
 - Depletions of Interconnected Surface Water
- GSP by necessity will need to manage to keep conditions above the shallowest of the minimum thresholds at each monitoring well

4.b.iii. Groundwater Levels

Chronic Lowering of Groundwater Levels

• MT = Lower of:

4/9/2021

- -20% of range below historical low, and
- The 20th percentile of shallowest domestic wells in the monitoring well's Thiessen polygon
- MO = Mean of last 5 years available measurements

Joint TAC

IMs = TBD based on PMAs

Proposed Approach

- Set MTs based on lower of historical low plus percent range and percentile depth of nearby wells
- Well depths used to set MTs in most areas
- Historical water levels used to set MTs in areas of greatest drawdown

4/9/2021

Groundwater Levels: Minimum Threshold, Measurable Objective

4/9/2021

19

Summary: Groundwater Levels – Minimum Threshold, Measurable Objective

- MT = Lower of:
 - -20% of range below historical low, and
 - The 20th percentile of shallowest domestic wells in the monitoring well's Theissen polygon
- MO = Mean of last 5 years available measurements
- Undesirable Result is detected when:
 - -25% (13 of 50 representative monitoring wells)
 fall below the minimum threshold for 24
 consecutive months

Economic Analysis to Support Setting Groundwater Level MTs/MOs

- The proposed criteria for setting MT is the lesser of 20% below the historical low or 20th percentile of nearby domestic well depths
 - 1. What are the economic implications of setting higher/lower MT?
 - 2. Is there an economic rationale for setting MT higher than the proposed criteria?

Economic Analysis Overview

- Quantify, costs, benefits, and tradeoffs of setting MT at different levels
- Reconnaissance-level
 assessment:
 - -Applicable only to regions with MT set based on levels
 - Example analysis only considers monetizable benefits and costs

Example Costs

- All costs are annual over a range of possible MT

 Well replacement
 Pumping cost
- Annual cost at the proposed MT are generally under \$1M per year
- Vary due to:
 - -Number of domestic wells
 - -Current pumping depth
 - -Average annual pumping

4/9/2021

Example Benefits

- Evaluate the avoided-cost of projects/management actions required to keep levels higher
 - This <u>example</u> uses demand management as a proxy cost
 - In practice, projects would be considered
- Annual cost at the proposed MT are generally under \$0.75M per year
- Vary due to:
 - -Pumping
 - -Current crop mix

Monitoring Well: 21N03W34Q002

	Crop	Acres	
1	Almonds	247	
2	Walnut	842	
3	Wheat	270	
4	Alfalfa	147	
5	Tomatoes	75	
6	Sunflower	3,127	
7	Olives 396		
8	Melons	1,175	
9	Other Truck	782	

	Crop	Acres			
1	Almonds 801				
2	Walnut	Walnut 90			
3	Wheat 105				
4	Young Perennials 591				
5	Alfalfa 57				
6	Tomatoes 517				
7	Misc. Grain	296			
8	Corn 96				
9	Sunflower 7,535				
10	Olives 61				
11	Melons 457				
12	Other Truck 12				

Benefit Cost Analysis

 Is there an economic rationale for setting MT incrementally higher than the proposed criteria?

Summary conclusion:

- Example economic analysis shows that the cost of setting higher MT is generally greater than the expected benefits
- Exceptions are in areas near the river that will set MT based on alternative criteria

Benefit/Cost Ratio

4.b.iv. Groundwater Storage

Reduction of Groundwater Storage

- Levels are an appropriate proxy because the limiting factor in accessing storage in the Colusa Subbasin is well infrastructure, not water available in storage.
- Recommendation: Monitor and manage using groundwater level MTs and MOs as a proxy.

4.b.v. Groundwater Dependent Ecosystems (GDEs)

Groundwater Dependent Ecosystems (GDEs)

- Select Representative Network:
 - Shallow monitoring wells (shallower than 100 feet bgs) within one mile of "More Likely (3) and "Most Likely (4)" GDE locations
- Only 5 of the 50 representative sites are both shallower than 100 feet bgs, and within one mile of a GDE
- Minimum threshold consideration 30 feet bgs (TNC 2018 pp 46, 72, and 75)¹
- Recommendation: improve GDE classification reliability, expand shallow monitoring network near GDE locations, and establish minimum thresholds in 2027 GSP update.

^{1.} Nature Conservancy. 2018. Groundwater Dependent Ecosystems under the Sustainable Groundwater Management Act. January. Joint TAC

4.b.vi. Depletions of Interconnected Surface Water

Depletions of Interconnected Surface Water

- Depletion of Interconnected Surface Water Undesirable Result Statement (from 11/13/20 Joint TAC Meeting)
 - -The undesirable result for depletions of interconnected surface water is a result that causes significant and unreasonable adverse effects on Beneficial Uses and Users of interconnected surface water <u>within the Colusa Subbasin</u> over the planning and implementation horizon of this GSP. (Emphasis added)

Depletions of Interconnected Surface Water

- GSP regulations in places support limiting Undesirable Results analysis to within the Colusa Subbasin
- GSP regulations in places infer that Undesirable Results outside the Colusa Subbasin are included
- Environmental community strongly endorsing that GSPs explicitly protect streamflow depletion
- Other Sacramento Valley subbasins generally taking a position:
 - Acknowledging that the Sacramento River and groundwater are interconnected but the relationship is inadequately understood and influenced by external factors (factors outside the subbasin)
 - Supporting increased monitoring to better understand dynamics

What Does Modeling Reveal About Streamflow Depletion?

 Viewed together, averaged over a 50-year projection, average annual gains and losses from the Sacramento River and Stony Creek are:

Stream Gains and Losses	Future Conditions without Climate Change (TAF)	Future Condition with 2070 Climate Change (TAF)	Change (TAF)	Change (%)
Gains from GW	+349	+323	-26	-7.5
Losses to GW	+231	+253	+22	+9.5
Net Stream Gain	+118	+70	-48	-41

- Why? Primarily increased GW pumping to meet higher crop demands due to climate change
- Modeled values subject to high uncertainty

Depletions of Interconnected Surface Water: Possible Approach for Near-Stream Wells

- Approach Depletions of Interconnected Surface Water using groundwater levels as a proxy
 - -Stream gages are not prevalent enough to use for monitoring at this time
 - -Investigate adding stream gages and appropriate GW level monitoring
- Set MTs at historical low GW levels to avoid changes to SW gain/loss relative to recent historical (2015) conditions
- Focus on key water bodies:
 - -Sacramento River
 - -Stony Creek
 - -Colusa Basin Drain

Near-Stream Wells

Stream buffer (miles)	Number of monitoring wells within buffer	
1	4	
2	9	
3	14	
4	17	
5	22	

Joint TAC

4/9/2021

Minimum Thresholds and Multiple Sustainability Indicators

- GSP must manage to avoid undesirable results for all applicable sustainability indicators and beneficial uses
- Need to simultaneously consider minimum thresholds across multiple sustainability indicators because they can be different for:
 - Groundwater Levels
 - Groundwater Dependent Ecosystems
 - Depletions of Interconnected Surface Water
- GSP by necessity will need to manage to keep conditions above the shallowest of the minimum thresholds at each monitoring well

Multiple Sustainability Indicator Minimum Thresholds

 Surface water depletion MTs are shallower than well infrastructure thresholds

Joint TAC

Depletion of Interconnected Surface Water

• Example Hydrographs

4/9/2021

Joint TAC

Summary and Discussion

- Additional monitoring needed to improve understanding
 - Potential regional approach across Sac Valley subbasins
- MTs based on streamflow depletion are higher and more constraining than those for GW levels
- MTs based on recent historical GW levels would:
 - -Allow future GW operations to be about the same as historical
 - Prevent changes in streamflow accretion/depletion relative to historical (avoids significant and unreasonable effects)

4.c. Projects and Management Actions (PMAs)

Projects and Management Actions (PMAs)

- Last addressed at 11/13/20 Joint TAC meeting
 - Reviewed approach to identify, describe, and select PMAs for inclusion in the GSP
- Draft Chapter 6 due for review by July 16
- Targeting completion of technical work by mid-June
- Joint TAC Meetings
 - April 9 (today): Review initial project list/solicit input
 - May 14: Project details and ranking
 - June 11: Adopt recommendation on selected PMAs

PMAs - GSP Regulatory Requirements

- GSP must include projects and management actions (PMAs) ".. to meet the sustainability goal for the basin in a manner that can be maintained over the planning and implementation horizon." (§ 354.42)
- <u>Sustainability goal</u> must "... ensure that the basin will be operated within its sustainable yield..." (§ 354.24)
- Information Required (§ 354.44) :
 - -List of proposed PMAs
 - -Measurable objective(s) that will benefit from the proposed PMAs
 - -Description of conditions triggering implementation and decision process
 - -Other details

General Project Types

Recharge

- -In-lieu groundwater recharge
 - Existing conveyance and distribution infrastructure
 - New conveyance and distribution infrastructure, if needed

-Direct groundwater recharge

- Winter flooding of ag lands
- Recharge basins
- Recharge wells
- Reductions in non-beneficial consumption
- Recharge water supply sources
 - Sacramento River: full use under existing CVP contracts, water transfers, Section 215 water (unmanaged flood flows)
 - -Stony Creek
 - Small, local watersheds

Joint TAC

Initial PMA Inventory (Project List)

- Solicitation for PMA ideas via this Google Form
 - -PDF and Word versions of form on CGA and GGA websites
 - -Only one response received to date, possibly another coming
- Sources of project information
 - Existing projects that could be scaled up
 - Previously identified projects
 - Team-identified projects
 - TAC-suggested projects
 - Other
- Focus on projects that could help address areas with sustainability concerns

Areas with Sustainability Concerns

- Orland-Willows Westside
- Williams-Arbuckle Westside

Average 2010 to 2020 change in GW elevation. Source: https://sgma.water.ca.gov/webgis/?appid=SGMADataVie wer#gwlevels

4/9/2021

Joint TAC

Subbasin PMAs Colusa **Orland-Willows Westside**

Legend

--- 0

- -10

-20

-30

-40

Carl S

Colusa Subbasin

Counties

Colusa Drain Water Users Association

Orland-Willows Westside

- Existing infrastructure
 - Orland-Artois, Glide, and Kanawha Water Districts, Orland Unit Water Users Assn
- In-lieu recharge
 - Within existing service areas
 - Service area expansion
 - OAWD service area "in-fill"
 - Annexations (subject to system capacities)
- Direct recharge
 - Winter spreading on ag lands

– Voluntary, incentive-driven participation

Many potential configurations

16N03W14H003-006M

16N03W35N002M

15N02W19E001

15N03W20Q001-003M

14N03W14Q003M

15N03W08Q001M

Westside Water District

2.5

5 mi

0

Maxwell Irrigation District

14N02W13N001M

13N02W04G001-004M

14N02W29J001M

Colusa County Water District

14N02W22A002-005M

307

13N01W07G001M

16N02W25B002M Colusa Drain Water Users Association

Glenn - Colusa Irrigation District

Capital Processes 15N01W05G001M

Sutter County

14N01W04K003M

2

Sacrai

14N01E35P001-004M

Reclamation District No. 108

13N01E11A001M

13N01W13P001-003M

-10

13N01W22P002M

-20

13N01E

13N02W20H002M

Yolo County

14N03W24C001M

30

— 0 — -10

Legend

Lako County

Groundwater Basins

2010 to 2020 GW Level Change (ft)

Colusa Subbasin

Counties

-20

-30

-40

A CALLER AND

Williams-Arbuckle Westside

- Build on existing arrangements/agreements
- Existing infrastructure
 - Westside and Colusa County WDs
- In-lieu recharge
 - Within existing service areas
 - Service area expansion
 - Annexations (subject to system capacities)
- Direct recharge
 - Winter spreading on ag lands
 - Voluntary, incentive-driven participation

Many potential configurations

Other Identified Projects

- 1) Multi-benefit On-farm Managed Aquifer Recharge/FloodMAR
 - CGA & GGA partnerships with TNC
 - Increase direct recharge
 - Environmental benefits
- 2) GCID Main Canal Regulating Reservoir
 - 30,000 to 40,000 AF regulating reservoir on CBD
- 3) Invasive plant species (Arundo) eradication
 - Reduce shallow GW consumption

- 4) Sacramento River Water Treatment Facility
 - Treat and deliver high quality drinking water to small communities currently using poor quality groundwater
- 5) Orland Unit Water Users Assn Recharge
 - Direct recharge of Stony Creek high flows in creeks, ag lands, and dry wells
 - Could be integrated into Orland-Willows Westside project configurations
- Other projects to be identified

PMAs - Next Steps

- Continue to identify viable, effective project concepts
- Use model to establish scale of recharge needed
- Estimate recharge water sources, quantities and timing
- Develop and evaluate alternative projects needed to achieve and maintain sustainability
- Develop project descriptions for GSP

5. Topics and TAC Decisions for Next Meeting

May 14, 2021 Joint TAC Meeting Topics

- Sustainable Management Criteria
 - Make TAC recommendations to GSA Boards for GW levels, GW storage GDEs and streamflow depletion
- Projects and Management Actions
 - Conceptual project configurations
 - Model results (sustainability benefits)
 - Initial cut at most promising projects

Discussion